skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "David"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Since SSH’s standardization nearly 20 years ago, real-world requirements for a remote access protocol and our understanding of how to build secure cryptographic network protocols have both evolved significantly. In this work, we introduce Hop, a transport and remote access protocol designed to support today’s needs. Building on modern cryptographic advances, Hop reduces SSH protocol complexity and overhead while simultaneously addressing many of SSH’s shortcomings through a cryptographically-mediated delegation scheme, native host identification based on lessons from TLS and ACME, client authentication for modern enterprise environments, and support for client roaming and intermittent connectivity. We present concrete design requirements for a modern remote access protocol, describe our proposed protocol, and evaluate its performance. We hope that our work encourages discussion of what a modern remote access protocol should look like in the future. 
    more » « less
  2. Parasites harm host fitness and are pervasive agents of natural selection capable of driving the evolution of host resistance traits. Previously we demonstrated evolutionary responses to artificial selection for increasing behavioral immunity to Gamasodes queenslandicus mites for Drosophila melanogaster. Here, we report transcriptional shifts in metabolic processes due to selection for mite resistance. We also show decreased starvation resistance and increased use of nutrient reserves in flies from mite-resistant lines. Resistant lines exhibited increased activity, reduced sleep, and elevated oxygen consumption during the night. Using a panel of D. melanogaster lines exhibiting variable sleep durations, we found a positive correlation between mite resistance and reduced sleep. Restraining the activity of artificially selected mite-resistant flies during exposure to parasites reduced their resistance advantage relative to control flies. The results suggest that ectoparasite resistance in this system involves increased activity during the scotophase and metabolic gene expression at the expense of starvation resistance. 
    more » « less